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ABSTRACT

The initial assembly of Space Station Freedom involves the Space Shuttle, its

Remote Manipulation System (R_MS) and the evolving Space Station Freedom. The

dynamics of this coupled system involves both the structural and the control system

dynamics of each of these components. The modeling and analysis of such an assembly is

made even more formidable by kinematic and joint nonlinearities.

The current practice of modeling such flexible structures is to use finite element

modeling in which the mass and interior dynamics is ignored between thousands of nodes,

for each major component. The model characteristics of only tens of modes are kept out of

thousands which are calculated. The components are then connected by approximating the

boundary conditions and inserting the control system dynamics.

In this paper continuum models are used instead of finite element models because of

the improved accuracy, reduced number of model parameters, the avoidance of model order

reduction, and the ability to represent the structural and control system dynamics in the

same system of equations. Dynamic analysis of linear versions of the model is performed

and compared with finite element model results. Additionally, the transfer matrix to

continuum modeling is presented.
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Thecontinuummodelingapproachisseentooffer aviablealternativeto finite

elementmodeling. Thecontinuumapproachenablesincreasedinsightfor synthesisand

integratedcontrol/structuresdesign.

NOMENCLATURE

Symbols

A, B, C, D

C

EA

EIx, EIy

Fo

GA

GIy

F

Fo

I

L

Qu

Qs

S

Q

S

W

f_

state vector elements, coefficients of the sinusoidal and hyperbolic

functions

model parameter vector

longimclinal stiffness

bending stiffness

constant axial force

lateral shear

torsional stiffness

force distribution function

axial, steady force

inertia matrix

length of beam

deflection coefficient matrix

angular deflection matrix

real part of the roots

state vector, coefficients of sinusoidal and hyperbolic mode shape

basis functions

real part of root

modal frequency, imaginary part of the roots

angular velocity vector

Superscripts

T

-1

O

/

transpose

inverse

differention with respect to t

differention with respect to z
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Subscripts

i

c.g.
n

x

Y

Z

Y

mode index

center of gravity

general index

x axis

y axis

z axis

torsional axis, z
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INTRODUCTION

The initial assembly of Space Station Freedom involves the Space Shuttle, its

Remote Manipulation System (RMS) and the evolving Space Station Freedom. The

assembly of the Space Station Freedom is performed by positioning and connecting 22

modules using a remote manipulation system (RMS). The dynamics of this coupled

system involves both the structural and the control system dynamics of each of these

components. The numerous configurations that result from this assembly process

necessitate an efficient procedure for accurately modeling the structural and control

dynamics. The modeling and analysis of such an assembly is made even more formidable

by kinematic and joint nonlinearities.

Modeling of complex flexible spacecraft is an issue which has far reaching

consequences in controller design and the subsequent spacecraft performance. Numerous

difficulties in controlling flexible spacecraft have been attributed to inaccuracies in modeling

[1]. With higher controller bandwidth, modeling issues assume greater significance.

Increased size and more demanding control specifications promise to make high

performance control more difficult [2]. Current modeling schemes for the design and

analysis of structural and control systems have several limitations [3]. The conventional

approach is to use elements which are void of dynamics on the interior of their boundaries.

The computational cost and numerical inaccuracies involved in generating solutions to these

equations impose a practical limit to the size (and consequently the accuracy) of these

structural dynamics models. For problems with minimal control-smacture interaction, the

finite element models are adequate. High performance control systems will however

require increased fidelity and accuracy ha the models.

Distributed parameter modeling is proposed in this work to synthesize high fidelity

spacecraft models. The distributed parameter models provide a single set of equations for

control and structural dynamics. The conventional finite dimensional representation of

complex spacecraft by the finite element method suffers from the following drawback.

Finite element models are generally too large for control work. One performs model

reduction to reduce the model order to controller synthesis amendable dimensions. SpiU-

over of control energy into the unmodeled modes can result in instability. The proposed

approach represents flexible structural members by partial differential equations offering

significant advantages in modeling, parameter estimation and the integrated design of

control/structural systems [4], [5], [6]. The present method differs from the finite element
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method in that an individual element can represent all the modes of that "super" element and

produce the force and moment vectors at its boundaries. These elements are then connected

at their boundaries to form the model of the complete smacture. Bishop [7] and Snowdon

[8] have studied applications in which a limited number of such elements have been

connected to form simple frames. The homogenization technique [9] and [10] for repetitive

lattice trusses is particularly useful. For spacecraft control applications, it is necessary to

connect many distributed parameter elements to represent the structural dynamics of

complex flexible spacecraft. The software programs available for continuum modeling

include: Poeleart's [11] DISTEL, Taylor's [12], PDEMOD and Anderson's [13] BUNVIS

program. In this work, PDEMOD is used to generate some of the results.

This paper will discuss the generation of the system of partial differential equations

for modeling complex, flexible spacecraft. A continuum model of the assembly

configurations of the Space Shuttle RMS - Payload will be used to study the control

problems involved. Continuum models are shown to have distinct advantages for control

applications.

This paper is organized in the following manner. The formulation of the structural

dynamics models, the transfer matrix approach to modeling and the control system

embedding methods are presented in the next section. The numerical results for a simple

model of the Shuttle/RMS Payload assembly are presented. The results compare the modal

characteristics obtained using NASTRAN with the continuum results. The concluding

remarks identify the salient features of the proposed approach and related modeling and

analysis accomplishments to date.

Discussion

The formulation of the dynamics using a set of distributed parameter elements

connected at their boundaries is key to obtaining the objectives of optimal parameter

estimation. The types of elements to be considered are (1) rigid body with a full inertia

matrix, and (2) dynamic, flexible beam element. The equations of motion for each of these

elements will be considered in turn.
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Equations of Motion

A Ncwtonian or inertial flame of reference is used for the motion of all beam

elements and rigid bodies. For example, the point of attachment in the Newtonian axis of a

reference, undcflectcd beam is:

Deflected beam _\.

i \m Ti,d_ "v

x R_(t_ r__ Fixed Beam Axis

_(0) V Position

Figure h Diagram of a Rigid Body Attached to its
Reference Flexible Beam

Rattach,o = Rc.g., o + Tbeamr
(1)

For the deflected beam:

Ratt, ach,t = P_ttach.O + TbeamU

= Re.g., 0 + Tbeamr + TbeamU (2)

The position of the body center-of-gravity due to beam deflection is:

Re.g.t = Rattach,t - Tbodyr

= Re.g.O + Tbeamr + Tboarau- Tbodyr (3)

For small angular deflections

Tbody = Tbeam + Tilda(Tb, u')
(4)
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Substituting,we get

Rc.g., , = Re.g.. o + Tbea.nau- Tilda (TboamU')r

=Ro.g..o+Tbe u+R(Tbe u') (5)

Differentiating, we get the acceleration of the body center-of-gravity:

=rbo, a+ (6)

Equations of motion are written for each rind body and the forces and moments

imparted by the beams are taken into account. In each case it is necessary to account for the

different frames of reference and joints of attachment. Equations of motion for the linear

and angular degrees of freedom for all of the bodies are assembled into a single matrix, A.

In the time domain the equations of motion are:

./_¢.g = _ (Forces) / m

= Ibody-I _ (Moments) (7)

In the frequency domain, the linear and angular equations of motion are the basis

for each block of elements:

Aangular,J=Qui +T?Ifl(--_)_.,(Tboam-iPMi+Rbeam-iTb,am-iPFi} (8)

For each case in which a rigid body has more than one beam attached, a constraint

equation is added to the system of equations. Assembly of the equations of motion and the

constraint equations yields the system matrix from which we get the characteristic equation:

IA(a+ ]w)l= 0 (9)
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Flexible Beam Equations

The flexible beam elements exhibit lateral bending in two axes, axial deformation,

and torsion. The governing partial differential equations have a variety of terms so that

parameter values can select, for example, a wave or string equation, Euler beam equation,

or Timoshenko beam equation. A flexible beam element will be described by at least four

partial differential equations.

Lateral Bending

The beam equations represent (1) Euler bending stiffness, (2) axial force stiffness,

and (3) Torsion. For bending in the x-z plane:

MUx, l,tt + Elx, lUx.l,zzzz +GAUx, l.zztt + FoUx.l,zz + Kx(Ux,1 +Ux,2) = Fx.l(Z,t)

Fx,l(z,t) (10)

Axial Deformation

Axial dynamics is represented by a wave equation with an additional term which

represents a spring connected to a second distributed mass.

miiz, 1 - EAuzz,1 + Kz(uz, 2 + Uz,1) = Fz,l(Z,t ) (11)

Torsion

Torsional dynamics is represented by a wave equation

(12)

Solution of the Partial Differential Equations

The solutions of these partial differential equations for zero damping produce the

sinusoidal and hyperbolic spatial equations which comprise the mode shape functions. For

the case that Fo = 0, the bending mode shape in the x-z plane is:
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u:,( z) = Ax sin_lxz + Bx cos/31x z + Cx sinh _lxz + Dx cosh/31xz (13)

Similarly, for bending in the y-z plane:

Uy ( Z) = Ay Sin fll yZ + By cosfllyZ + Cy sinh _l yZ + D y coshfllyZ (14)

are;

The undamped mode shape functions for torsion and elongation about the z axis

Uz(Z) = Azsin + cos/ zz (15)

u_(z) = Au/ sin _u/z + B_/ cosfl_,z (16)

These undamped mode shapes are expected to be good approximations to the exact

solutions for low level of damping. The mode shape of the entire configuration consists of

these functions, repeated for each beam element. Because bending in two directions,

torsion and elongation are considered, a total of 12 coefficients are needed. The vector of

coefficients is the state vector of the structural dynamics. A vector of the coefficients of

these sinusoidal and hyperbolic functions will serve as the state vector.

0 T : [A x B x C x D x Ay By Cy Oy A z B z AgB_] (17)

Under conditions of applied forces it is necessary to include rigid body modes.

Their coefficients will expand the state vector accordingly. All deflections, forces,

moments, and accelerations will be expressed in terms of such state vectors.

The motion of each rigid body is put in terms of the deflection at the point of

attachment of a particular reference beam element. The linear and angular deflection vectors

can be expressed as:

u=a.(z)O (18)

u=Qs(z)O (19)
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Next,it is necessarytoexpresstheforcesandmomentsateitherendof thebeam
elements.Theforceandmomentvectorsare:

Fat-each = PF (z)O (20)

Fat_eh = PM (z)O (21)

It is also necessary to account for changes in axes from each beam to the body to

which it is attached, and for points of attachment at some distance away from the center of

gravity. The force and moment that a beam-i applies to a body-j are:

Fbody_ j = Tbody_jrTbeara.iPF,i (z)O

Mbody_ j = Tbody_j T {Tbeara-iPM,i(z) + Rbeam.i(Z)Tbeam.iP1;(z)}O

(22)

(23)

The partial differential equations provide the relationships between the modal

frequency and the eigenvalues for the mode shape equations. The lateral beam, axial

deformation and torsion equations can be solved for the zero damping cases to produce the

following relationships between the modal frequency and the wave numbers in the mode

shape function.

For bending in the x-z plane:

#x,x =.50 + @50) 2 + mco2 / F,I 

/_2,x' = --.50 + 4(.50) 2 + mco 2 / El x

where b = mco z / GA + Fo / EI x.

(24)

(25)

The case for bending in the y-z plane is similar. For torsion and elongation:

fly = co / _/GI_ / m

flz = co l E.fffA'Tm

(26)

(27)
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Transfer Matrix Approach

The transfer matrix approach [14] is suitable for large systems made up of several

subsystems. The typical subsystem may be simple elements like a scalar spring or a

complex Bemoulli-Euler or Timoshenko beam element. The subsystems are cast in the

form of a field and a point matrix. The formulation is in terms of the state vector which is a

column matrix of displacements and internal forces. The treatment of the transfer matrix

derivation for rigid bodies and flexible beams follows the work in [15].

Rigid Body

The translational and rotational equations of thej th body can be described by the

following equations (figure 2).

YCM

Q jR

Mj R

Figure 2: Free-Body Diagram of the rigid body

mj_c M = QR _ QL

'jy'= Mf -Q_rf -QLr?

(28)

(29)

For harmonic motion, the equations are rewritten as

af = QL _ mj(.O2YcM

MI_=ML +Q_rf +QLr_-Ijo)2yj "L

(30)

(31)

The displacement of the center of mass Yen is related to Yfl and Y_ by
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(32)

(33)

Using the expression for YCM from equation (33) and by the property of slope

continuity, equation (32) can be rewritten as

yR = yL _ rjyfL (34)

+4.

Substituting for YCM in equation (30), we get

QR =QL _mjCO2(yjL _rjyj, L) (35)

Substituting the expression for Q_ in equation (31), we get

M_ = M L + riO L -mjco2_Y?-(Ij-mirLr_)o92Yj L (36)

Equations (34), (35), (36) and the slope continuity condition yield the point matrix

[PM]j for the rigid body element

[PM]j =

1 -rj 0 o
0 1 0 0

-mjCO 2 mjO)2r L 1 0

mjo92r: -(Ij-m)4_) _ 1
(37)

=[PM]j

I_MJj LMJj (38)
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Flexible Beam

The field matrix for Bemoulli-Euler beam is derived from the solution of the

bending mode slope (Equation 13) as follows.

At the left end of the beam (z = 0), the displacement Y(0) slope Y'(0), shear force

Q(0) and bending moment M(0) will be

E ]RE°1° llrAxlr _ 0 _ 0//_xl
--k_ 3 0 +g_3 o //cx/

_-1 o -k_2 0 -k_2JLz_xJ (39)

where Q = kY" and M = kY",k = El. For notational simplicity, the subscript x

on fl is dropped. At the fight end of the beam (z = L)

li/ i cos cosh ira1/ _c°s_L -_sm_L _cosh_Z _s_Z //n_/
=/_cos_-k_sM_L k_osh_L-_sinh_L//C_/

_j Lk_2sm#L kfcos_L -k_2sinh/_L k_2cosh#L/tDx/ (40)

Solving for the coefficients Ax,Bx,Cx,Dz from equation (39) and substituting in

equation (40) we get the field matrix for the beam element as:

½(cos#L+cosh/_L) _(_tn#L+_L) 2--_3(si_/_L-si_#L)

_(si_#Z+s_#L) ½(eo_#L+co_h#L)2--_f(cos_L-co_#L)

-k-_f123(sinflL+s_th_L) 2k_2(cosflL+coshflL) _(cosflL-coshflL)

2-_f (cos#L-co_/_m)

2-_ (_in/_-s_/_)

(_in/_-_/_m)

½(co_/_m-co_,_L)

= [FM]i Q

LM.Jj LMJj-I

(41)
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Thetransfermatrix for aflexiblebeamwithamassattherightendis

[TF]j =[PM]j[FM]j (42)

X

"-Z

Figure 3: Beam Offset

Offset Attachment

The planar offset attachment transfer matrix can derived from figure 3. The offset

of point 2 from the origin (point 1) is given by rx and rz.

ux

Uz

e,
e,

8

.My. 12

"1 0 -r z 0 0 O"

0 1 rx 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 rz -r x 1

"ux 7
I

Uz I

o,
F,

8

.4
1 (43)
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Joint with Compliance

The joint compliance transfer matrix is derived for planar motion assuming a spring

of stiffness ke • The joint equations for planar motion are

also

[M_12 = ko( Ol - 02 ) (45)

The transfer matrix can be expressed as

Ux

Uz i

Oy!
I& _
IG

LM,i

-1

0

0000 0

1000 0

O0100-11k o

00010 0

00001 0

00000 1

uz

&

6

My, (46)

Rigid Body Control

The rigid body point matrix for a body with mass and inertia but with rj equal to

zero is obtained from equation (37). Using the Laplace variable s 2 in the place of -092 ,

we get

ru x "

uz

o,
E,

G

_My,

1 0 0 0 O"

0 1 0 0 0

0 0 1 0 0

Ms 2 0 0 1 0

0 Ms 2 0 0 0

0 0 Is 2 0 1

' ux

uz

o,
&l

G

M,). (47)

Rigid body controllers basically stabilize the system asymptotically and axe of the

proportional derivative type. The transfer matrix is modified in the following manner for

control:
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ms 2 _ ms 2 + CxS + k x

Is 2 _ Is':' + CoS + k o

Joint Control

Analogous to the rigid body controller, it is also possible to embed local feedback

control effects into the transfer matrix for a joint. Only one matrix element is affected. For

proportional derivative control including sensorf(s) and actuator g(s) dynamics, the matrix

in equation (46) is modified thus:

1/k 0 _ 1/[f(s)g(s)(k I +k2s)] (48)

Alignment Matrix

The alignment of each element with respect to global coordinates is accomplished

by a simple matrix multiplication. The planar alignment transfer matrix is

Fu,l
l
!Uz I

Fx

Fz

"COS

sing

0

0

0

2 0

-sin_x 0 0 0

cosa 0 0 0

0 1 0 0

0 0 cosa -sin_x

0 0 sin_x coso:

0 0 0 0

" " Ux "

0 u z

o oy
o Fx

0 Fz

1 _Mz. t (49)

End-to-End Transfer Matrix

The transfer matrix which relates the deflections and loads at the space shuttle to

those through the RMS to the Space Station consists of the product of all of the elements as

shown in Figure 4.
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Space
Station

Wrist Boom _:::::_ Elbow _=_ Boom

I_.MS

F
Figure 4: Shuttle/RMS/Station Configuration

Shoulder

Shuttle

MJstation LMJsh_ttle

(50)

It is now possible to derive the characteristic equation for the total system. The

effect of all the control systems will be reflected in the characteristic equation since they

form a part of the rigid body and joint transfer matrices.

The transfer matrix forms an intermediate step in the computation of the

characteristic equation. For beams and masses connected to one another, the transfer

matrix between station 1 and station n is derived by multiplying the appropriate field and

point matrices. The expression for a typical problem may be expressed as

LMJ,,  44JLMJ (51)
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If the boundary is cantilevered, then

L0 Jn LMJ_ (52)

Rearranging the state vector we have

01 =[0]

M1 (53)

where

[A] 'i Zl= -1 ¢23

0 033 ¢34]0 043 044 (54)

The characteristic equation is given by

or

det[A] = 0 (55)

or

033 044 -- 034 043 = 0 (56)

For continuum models, equation (56) has infinite solutions and is solved by search

techniques to determine the frequencies. Similar characteristic equations can be derived for

other boundary conditions.
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For flee-free boundary conditions, the characteristic equation is given by

The transfer function relating the linear and angular deflection of the shuttle (for

example) to applied forces and moments are:

FE lshu .
The Shuttle/RMS/Payload configuration is now studied from the continuum

viewpoint.

Study of Shuttle/RMS/Payload Assembly

The Space Shuttle/RMS/Payload assembly is modeled and analyzed using the

continuum and the finite element approach. For the continuum analysis, the planar transfer

matrix approach is used to generate the frequencies of the configuration and the transient

response of the structure.

The data for the two link RMS configuration is extracted fi'om the payload

deployment and retrieval document [16]. Links 3 and 4 of the RMS arm are used in the

simulation. In this work, each link was assumed to be made-up of one material with

uniform section properties unlike reference [16] where the links were made-up of 3

segments each with different properties. The link properties are listed in Table 1.

The space shuttle and payload are modeled as rigid bodies with a mass of 6176

slugs and 124.22 slugs respectively. The inertia lyy of the space shuttle is 6.99 E6 lbs-in 2.
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/
center

of mass

f
orbiter (bo)

_x F_¢S

Payload

Figure 5: Shuttle/RMS/Payload Configuration

Figure 5 shows the Shuttle/RMS/Payload Configuration. The following three cases are

considered in this work:

Case 1: Shuttle with zero inertia and offset

Case 2: Shuttle with inertia and zero offset

Case 3: Shuttle with inertia and offset

For the Iransfer matrix approach, the relationship between the shuttle and the

payload is

[TM]=[Upay]oad Ulink 2 U_ink 1 Ushu_]e]

The characteristic equation for the free-flee configuration is derived and the

frequencies are evaluated. In order to obtain the y-z bending frequencies, the characteristic

equation is again solved numerically using the appropriate flexural rigidity value. The

results are compared with the frequencies from PDEMOD.

The NASTRAN model of the Shuttle/RMS/Payload assembly consisted of the RMS

being modeled using 50 bar elements each. The shuttle and the payload were modeled
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usingtwo concentratedmassesateitherendof theRMS. For theshuttlewith inertiaand

offset case,theconcentratedmasscardin NASTRANwassuitablymodified.
Table 1: RMS Link Properties

_operty

mass

length

EIyy

G

J

m/l

A

Link 1

9.5485 slugs

21.0 ft

5.6458 E6 lbft 2

5.2083 E6 lbft 2

3.846 E5 psf

6.7711 ft 4

0.4547 slug/ft

0.9218 ft 2

Link 2

5.9901 slugs

23.0 ft

3.4166 E6 lbft 2

2.4375 E6 lbft 2

3.846 E5 psf

5.0558 ft 4

0.2604 slug/ft

0.9218 ft z

The frequency spectrum in Hertz of the three configurations is shown in Tables 2-4.

Table 2: Frequencies for Case 1

Mode

1
2

3
4
5
6
7
8

NASTRAN
2.054

2.527
2.862

10.629
11.747
18.479!
23.171
25.963

PDEMOD

?
2.528
2.863
10.63
11.74

?
23.17
25.96

Transfer

2.528
2.862

10.629
11.747

?

23.171
25.964
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Table 3: Frequencies for Case 2

Mode

1
2
3
4
5
6
7
8

NASTRAN

0.1825
2.0548
2.8627
4.2036

?

11.7471
13.3324

PDEMOD

0.1961
2.0133

?
4.2065
4.6983
7.6745

?
13.3356

Transfer

0.1892

?
?

4.2033
4.6973

?
?

13.3337

Table 4: Frequencies for Case 3

Mode

1
2
3
4
5
6
7

8

NASTRAN

?
?

4.2037
4.7001

?
?

13.3339
14.7421

Transfer

0.3428
0.3685
4.4246
4.9433
9.8986
9.9017

13.5996
15.0281

Figure 6 shows a U'ansient response obtained from PDEMOD for a similar configuration

with and without joint control. The results show the promise of the continuum approach.

Existing Joint Damping

,

Time

Figure 6: Transient response of MB-1 Configuration
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CONCLUDING REMARKS

Partial differential equation models of flexible structures offer significant

advantages over finite element models for parameter estimation and control studies because

of the smaller number of model parameters. Until recently work was needed to generate

distributed parameter models of complex configurations which were also flexible. The

computer program, PDEMOD, enables the generation of distributed parameter models of

flexible spacecraft. Any configuration which can be modeled by a network of flexible

beam elements and rigid bodies can be modeled using PDEMOD. The modeling process is

well suited for the evolving Space Station Freedom, for the cases in which (1) the Space

Station assembly is attached to the Shuttle, (2) the assembly is linked to the Shuttle through

the RMS arm, and (3) the Space Station assembly is free of the Shuttle.

Comparisons of the model accuracy of finite element and continuum models of

flexible structures point out the limitations of firtite element modeling. First, the level of

complexity that is practical for finite element models is limited because of the computational

burden. The result is a limit to the accuracy that can be obtained. Second, as high levels of

accuracy are sought using finite element models, the difficulties in solving the eigenvalue

problem become more significant. It is quite possible, then, that for certain applications

continuum models can be more accurate.

A distributed parameter model of the Space Shuttle-RMS was generated using the

transfer matrix method and the software PDEMOD. The results show a very good

agreement with a detailed finite element model. Future directions include the frequency

characterization of structures with embedded control.
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